It’s Dynamite
In 1866, an American railroad company was constructing a tunnel through the Sierra Nevada mountains. They encountered particularly hard rock, and ordered three crates of the only blasting explosive that could do the job: nitroglycerine. The first of these crates arrived in a postal centre in San Francisco, and upon being accidentally dropped, promptly exploded, killing all 15 people present. The point was taken. ‘Nitro’ was dangerously shock sensitive. Its transportation was soon banned, and from then on, it had to be manufactured by on-site laboratories – an expensive and still quite dangerous task, as the number of deadly explosions would demonstrate.
The history of nitroglycerine is full of such sad events. It was first synthesised in 1847 by Ascanio Sobrero, an Italian chemist, and he was so frightened by his discovery that he did not immediately publish his findings. He was also the first to caution the world against its use, in both private letters and a journal article, arguing that it was impossible to handle the substance safely. However, it was soon discovered that when frozen (at about five degress), nitro was much less sensitive to shock. The problem was then in thawing it back into liquid form, at which point it became even more unstable. Again, a mounting death toll would testify to this fact.
Yet nitroglycerine always remained in demand, being the first practical mining explosive produced. Prior to this, gunpowder was used, but this was limited and clumsy. Gupowder is a ‘low’ explosive, meaning that it ‘burns’ from layer to layer, producing gases which expand at less than the speed of sound. Nitro is a ‘high’ explosive, meaning that it ‘detonates’ – that is, is triggered to react by the virtually instrantancous shock wave, producing gases which expand at more than the speed of sound. Gunpowder could not efficiently shatter rock (although it was suitable for bullets and artillery shells). Only nitro could really do the job, and a Swedish chemist, Alfred Nobel, became interested.
Nobel’s companies were moving from primarily iron and steel production to the almost exclusive manufacture of cannons, armaments, and gunpowder, and he saw the commercial value in making nitroglycerine manageable. He began experimenting – at considerable cost. In 1864, his younger brother and several workers were killed in a factory explosion. Undererred, Nobel built a new factory in the remote hills of Germany, determined to find the answer. He first tried combining nitro with conventional gunpowder, marketing the final product as ‘blasting oil’, yet accidental explosions continued. His factory was destroyed yet again, on two occasions!
The breakthrough finally came when Nobel’s company mixed liquid nitroglycerine with an inert absorbent silicate sand, known as ‘diatomaceous earth’. This was produced by grinding down diatomite, a rock found around the local hills. It is similar to volcanic pumice, being very light and highly porous, yet it is actually the fossilised remains of diatoms, a hard-shelled alga. This combination immediately made nitro less dangerous to handle, and by being solid, more convenient to package and transport. Nobel patented his invention in 1867 under the name of ‘dynamite’, based on ‘dyna’ the Greek word for ‘power’.
In its best-known form, dynamite was made in short paper-wrapped sticks consisting of three quarters intro to one quarter diatomaceous earth, but it would always remain dangerous to manufacture, store, and use. Over time, the nitro can seep out, crystallising on the outside of the sticks or pooling at the bottom of storage boxes, with all the consequent instability that raw nitro possesses. Nevertheless, in an age of extensive railroad and tunnel construction, the product would earn Nobel a great fortune. Yet, while high explosives serve a commendable purpose in peacetime engineering projects, Nobel’s fortune was also based on weapons of death and destruction, and the public knew it.
...